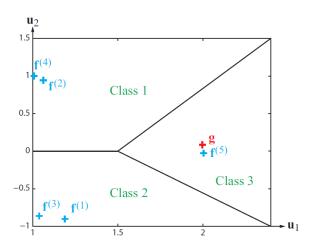
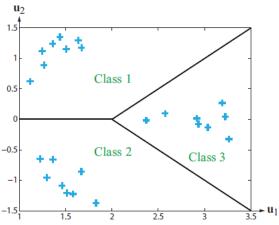

Concept Question 11-6: Why do we set small singular values to zero?


To reduce the dimensionality of the problem. In the examples in Section 11-9.1 and 11-9.2, this practice reduced the dimensionality to two, so training images could be depicted as locations in a plane: Figs. 11-12 and 11-13.



(b) Singular values σ_i of the training matrix

Figure 11-12 Depiction of 2-D subspace spanned by \mathbf{u}_1 and \mathbf{u}_2 . The blue + symbols represent each column of the training matrix (i.e., each training image $f^{(i)}[n,m]$. They cluster into 3 classes. The red + represents the observation image $g_{\text{obs}}[n,m]$.

(c) Depiction of 2-D subspace spanned by u₁ and u₂. The blue • symbols represent individual columns of the training matrix. They cluster into 3 classes.

Figure 11-13 (a) 24 training images, (b) plot of singular values, and (c) clusters of training images in $(\mathbf{u}_1, \mathbf{u}_2)$ space.