Concept Question 11-6: Why do we set small singular values to zero?

To reduce the dimensionality of the problem. In the examples in Section 11-9.1 and 11-9.2, this
practice reduced the dimensionality to two, so training images could be depicted as locations in a

plane: Figs. 11-12 and 11-13.
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Figure 11-12 Depiction of 2-D subspace spanned by uj
and wp. The blue # symbols represent each column of the
training matrix (i.e., each training image _f(f) [n.m]. They cluster
into 3 classes. The red + represents the observation image
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(a) 24 training images, each (3 = 3) in size
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(b) Singular values o; of the training matrix
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(c¢) Depiction of 2-D subspace spanned by uj and us.
The blue #+ symbols represent individual columns of
the training matrix. They cluster into 3 classes.

Figure 11-13 (a) 24 training images, (b) plot of singular
values, and (c) clusters of training images in (u,u;) space.



