Concept Question 8-7: If \mathbf{x} is a random vector and $\mathbf{y}=\mathbf{A x}$, how is $\mathbf{K}_{\mathbf{y}}$ related to $\mathbf{K}_{\mathbf{x}}$? Is it $\mathbf{K}_{\mathbf{y}}=\mathbf{A} \mathbf{K}_{\mathbf{x}} \mathbf{A}^{\mathrm{T}}$ or $\mathbf{K}_{\mathbf{y}}=\mathbf{A}^{\mathrm{T}} \mathbf{K}_{\mathbf{x}} \mathbf{A}$?
$\mathbf{K}_{\mathbf{y}}=\mathbf{A K} \mathbf{x} \mathbf{A}^{\mathrm{T}}$. This is easy to remember: Let \mathbf{x} be an N-vector and \mathbf{y} be an M-vector, so \mathbf{A} is $M \times N$. Only $\mathbf{K}_{\mathbf{y}}=\mathbf{A K} \mathbf{x} \mathbf{A}^{\mathrm{T}}$ makes sense.

