Concept Question 8-7: If **x** is a random vector and $\mathbf{y} = \mathbf{A}\mathbf{x}$, how is $\mathbf{K}_{\mathbf{y}}$ related to $\mathbf{K}_{\mathbf{x}}$? Is it $\mathbf{K}_{\mathbf{y}} = \mathbf{A}\mathbf{K}_{\mathbf{x}}\mathbf{A}^{\mathrm{T}}$ or $\mathbf{K}_{\mathbf{y}} = \mathbf{A}^{\mathrm{T}}\mathbf{K}_{\mathbf{x}}\mathbf{A}$?

 $\mathbf{K}_{\mathbf{y}} = \mathbf{A}\mathbf{K}_{\mathbf{x}}\mathbf{A}^{\mathrm{T}}$. This is easy to remember: Let \mathbf{x} be an *N*-vector and \mathbf{y} be an *M*-vector, so \mathbf{A} is $M \times N$. Only $\mathbf{K}_{\mathbf{y}} = \mathbf{A}\mathbf{K}_{\mathbf{x}}\mathbf{A}^{\mathrm{T}}$ makes sense.